WAVE MOTION

Definitions

Amplitude: The maximum displacement of any particle from its mean position is called amplitude of the wave

Period: The time taken for any particle to complete one vibration is called period of the wave

Frequency: The number of vibrations per second by a particle is called frequency (n). n = 1/T

Wavelength: The distance between two consecutive particles of the medium which are in same phase

Velocity: The distance travelled by the wave in one second is called velocity of the wave. $v = \lambda/T = n\lambda$

Properties of progressive waves

- Particles vibrate about their mean positions performing SHM
- All particles vibrate with same amplitude, period and frequency
- The phase changes from one particle to another
- · Each particle comes to rest momentarily at the extreme position
- Particles attain max velocity when they cross the mean position
- Energy is transferred along the wave. There is no transfer of matter
- · Wave Velocity depends on the properties of the medium
- Two types transverse and longitudinal

· Both propagate through solids. Only longitudinal can propagate through fluids

NOTE: If source performing SHM then the wave will be a sin or cos function of (x - vt) [if travelling along +ve x - axis] ==> y=Asin(kx - ωt) where $k=2\pi/\lambda = \omega/v$

Simple Harmonic Progressive Wave Derive its equation in different forms: (NOT IMP FOR THEORY)

Wave which travels continuously in a given direction and the particles of the medium perform SHM about their mean position is called simple harmonic progressive wave.

Let us consider a simple harmonic progressive wave travelling in the +ve X-axis direction. If y represents its displacement and x represents the position of the particle in the medium,

then the relation between them can be graphically shown.

At instant t, the displacement of the particle at origin (x=0) is given by $y = A \sin(\omega t)$

where A is the amplitude and $\boldsymbol{\omega}$ the angular frequency.

Let us consider a particle P at a distance x from the origin O. This particle lags behind the origin particle by some angle θ , because the disturbance reaches P after some time. Therefore, the displacement of P is given by $y = A \sin(\omega t - \theta)$

Since two particles differing by position $\lambda,$ differ in phase by $2\pi,$ therefore for P which is x distance away from origin, the phase difference is

> $\theta = 2\pi x$ λ $A \sin\left(1 + 2\pi\right)$

Therefore,

$$y = A \sin\left(\omega t - \frac{1}{\lambda}\right)$$
$$y = A \sin\left(\frac{2\pi t}{\lambda} - \frac{2\pi x}{\lambda}\right) \text{ since } \omega = 0$$

$$Y = A \sin\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda}\right), \text{ since } \omega = \frac{2\pi}{T}$$

$$w = A \sin^2 \pi \begin{pmatrix} t & x \\ x \end{pmatrix}$$

$$y = A \sin 2\pi \left(\frac{1}{T} - \frac{1}{\lambda}\right)$$
$$y = A \sin 2\pi \left(nt - \frac{x}{\lambda}\right)$$
$$y = A \sin 2\pi n \left(t - \frac{x}{n\lambda}\right)$$

$$y = A \sin 2\pi n \left(t - \frac{x}{v}\right)$$
, since $v = n\lambda$

$$y = A \sin 2\pi n \left(\frac{vt - x}{v}\right)$$
$$y = A \sin 2\pi \left(\frac{vt - x}{\lambda}\right)$$

Navlakh

NOTE: If the wave travels in the negative X direction, then all the above equations will have + instead of -

What are beats and explain the formation of beats and derive the expression for beat frequency:

When two sound waves having the same amplitude and slightly different frequencies, travelling in the same direction, arrive at a point simultaneously they produce interference. The resultant intensity of sound at that point varies periodically with time from maximum to minimum. When sound intensity becomes maximum, it is called waxing and minimum intensity is called waning. This phenomenon of waxing and waning of sound is called phenomenon of beats. One waxing and the next waning is called one beat and the time interval between two successive waxings or wanings is called beat period. The

number of beats produced per second is called beat frequency.

Consider two sound waves having amplitude A and frequencies n1 and n2 respectively such that |n1 - n2| is small.

 $v_1 = A \sin 2\pi n_1 t$ and $y_2 = A \sin 2\pi n_2 t$ By principle of superposition, $y = y_1 + y_2$ $(\sin(2\pi n_{*}t) \pm \Lambda \sin(2\pi n_{*}))$

$$y = A \sin(2\pi n_1 t) + A \sin(2\pi n_2 t)$$
$$y = 2A \sin\left(2\pi \left(\frac{n_1 + n_2}{2}\right)t\right) \cos\left(2\pi \left(\frac{n_1 - n_2}{2}\right)t\right)$$

Let
$$\frac{n1+n2}{2} = n$$
 = mean frequency and $2Acos\left(2\pi\left(\frac{n1-n2}{2}\right)t\right) = R$

Where R=resultant Amplitude

Thus, $y = R \sin(2\pi nt)$ This shows that the resultant is SHM of frequency n, mean of the frequencies, and amplitude R, which is variable

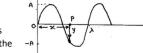
<u>Case 1</u>: Waxing: R = ±2A, when $\cos\left(2\pi \left(\frac{n1-n2}{2}\right)t\right) = \pm 1$ thus $2\pi \left(\frac{n_1-n_2}{2}\right) t = 0, \pi, 2\pi \dots$ Thus, we get waxing at $t = 0, \frac{1}{n_1 - n_2}, \frac{2}{n_1 - n_2}, \dots$ and so on Thus, the time between two consecutive waxings is $\frac{1}{n_1 - n_2}$

<u>**Case 2:**</u> Waning: R = 0, when $\cos\left(2\pi \left(\frac{n1-n2}{2}\right)t\right) = 0$ thus $2\pi \left(\frac{n_1 - n_2}{2}\right) t = \frac{\pi}{2}, \frac{3\pi}{2}, \dots, \dots$ Thus, we get waning at $t = \frac{1}{2(n_1 - n_2)}, \frac{3}{2(n_1 - n_2)}, \dots, \dots$ and so on

Thus, the time between two consecutive wanings is $\frac{1}{n_1 - n_2}$

Thus, the time between two successive waxing and waning is same Beat period = $\frac{1}{n_1 - n_2}$ and beat frequency = $n_1 - n_2$

Application of Beats:


>>Determination of unknown frequency

The sound note of unknown frequency is sounded simultaneously with a note of known frequency which can be adjusted. The known frequency is so adjusted that beats are heard. The further adjustment is made till beat frequency is reduce to zero. The two frequencies are now equal. >>The phenomenon of beats can be used to produce low frequency notes used in Jazz orchestra or western music

>>Musical instruments can be tuned by noting beats produced when two different instruments when sounded together. By adjusting the frequency of one of the instruments, the number of beats is reduced to zero. The two instruments are now emitting notes of same frequency. The instruments are now in unison with each other and gives pleasant music

VIII•IX•X ICSE • XI(Sc) • XII(Sc) • CET/JEE(M)/NEET • IGCSE •CBSE• IB • HL & SL + A & AS • Engineering Telephone: 9820246760 / 9769479368 • Websites: navlakhi.com / navlakhi.education Navlak Email: abhishek@navlakhi.com -or- kunal@navlakhi.com

9001:2015

Doppler Effect in Sound:

The apparent change in frequency of sound for a listener whenever there is relative motion between the source and the listener is called Doppler effect in sound.

Case 1: Source is stationery and observer is moving

>> If the observer is moving towards the source then

$$n_a = \left(\frac{V+Vo}{V}\right)n$$

Thus, the apparent frequency increases

>> If the observer is moving away from the source, then
$$n_a = \left(\frac{V-Vo}{V}\right)n$$

Thus, the apparent frequency decreases

Case 2: Observer is stationary and source is moving

>> If the source is moving towards the observer then
$$n_a = \left(\frac{V}{V-Vs}\right)n$$

Thus, the apparent frequency increases

>> If the source is moving away from the observer then
$$n_a = \left(\frac{V}{V+Vs}\right)n$$

Thus, the apparent frequency decreases

NOTE: If there is no relative motion between the observer and source (or both are stationary) then $n_a = n$

Applications of Doppler's Effect:

>>The traffic police use speed guns which are fixed for a certain speed. If the vehicle passing by passes at a higher speed, then beats are produced and an alarm is initiated. Thus, Doppler effect is used for speed detection on highways.

>>RADAR: It emits continuous high frequency electromagnetic waves called radio waves. These waves on hitting the object (like an airplane) will get reflected and mix (super position) with the constant signal to produce beats. From this beat frequency the speed of the object can be determined.

>> SONAR (Sound Navigation and Ranging) uses similar principle to determine speed of submarines using a sound source and sensitive microphones.

>>It can also be used to determine the speed of the star. If the star is moving towards the earth, the spectral lines are more towards violet end of the spectrum of if the star is moving away then the spectral lines are more towards the red end. This is called as Doppler shift and helps to determine the speed of the star.

>>In colour Doppler sonography, the ultrasonic waves are refracted from the body tissue and can give information about the rate of flow of various fluids including blood.

Limitation:

>>The velocity of the source of sound and the observer should be much less than the velocity of sound

>>The motion of the observer and source must be along the same straight line

>>The medium such as air, in which the observer and the source are situated is at rest.

Explain change of phase of reflected waves

A. Transverse Waves:

>>Reflection from rigid medium: On reflection from denser medium (like a wall), crest is reflected as a trough and vice versa. Particle and wave velocity are reversed. There is a phase change of 180° or π radians >>Reflection from rarer medium: On reflection from a rarer medium, crest is reflected as a crest and trough as a trough. Wave velocity is reversed. Particle velocity no change. No change of phase.

B. Longitudinal Waves:

>Reflection from rigid medium: On reflection from denser medium (like a wall), compression is reflected as a compression. Particle and wave velocity are reversed. There is a no phase change.

>>Reflection from rarer medium: On reflection from a rarer medium, compression is reflected as a rarefaction. Particle velocity and wave velocity are in opposite directions. There is change of phase of 180° or π radians

Principle of Superposition and Constructive and Destructive Interference:

Principle of superposition state: When two or more waves travelling through a medium arrive at a point simultaneously, each wave produces its own displacement at that point independent of the other. Hence the resulting displacement at that point is the vector sum of all the displacements due to all the waves.

Consider two waves produce displacements at x=0 given as $y_1=A_1\sin(\omega t)$ and $y_2=A_2\sin(\omega t+\varphi)$

According to principle of superposition, the resultant displacement $y=y_1+y_2$ $y=A_1sin(\omega t)+A_2sin(\omega t+\varphi) = A_1sin(\omega t)+A_2sin(\omega t)cos\varphi+A_2cos(\omega t)sin\varphi$ $y=(A_1+A_2cos\varphi)sin(\omega t)+A_2sin\varphi cos(\omega t)=Acos\theta.sin(\omega t)+Asin\theta.cos(\omega t)$ where $Acos\theta=A_1+A_2cos\varphi$ and $Asin\theta=A_2sin\varphi$

Thus, y=Asin(ω t+ θ) & A can be got by squaring and adding the above eqns $A^2\cos^2\theta + A^2\sin^2\theta = (A_1 + A_2\cos\varphi)^2 + A_2^2\sin^2\varphi$

Thus, $A^2 = A_1^2 + 2A_1A_2\cos\phi + A_2^2\cos^2\phi + A_2^2\sin^2\phi$

Thus $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\varphi}$

SPECIAL CASE 1: ϕ =0, $\cos\phi$ =1 ==> $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2} = (A_1 + A_2)$ If A₁=A₂ then Resultant A=2A₁ (Constructive)

SPECIAL CASE 2: $\phi=\pi$, $\cos\phi=-1==>A=\sqrt{A_1^2+A_2^2-2A_1A_2}=(A_1-A_2)$ If A₁=A₂ then Resultant A=0 (**Destructive**)

NOTE: Intensity α A² , Thus $I_{max}\,\alpha$ (A1+A2)² and $I_{min}\,\alpha$ (A1-A2)²

$$\frac{Imax}{Imin} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \frac{\left(\frac{A_1}{A_2} + 1\right)}{\left(\frac{A_1}{A_2} - 1\right)^2} = \left(\frac{r+1}{r-1}\right)^2, \text{ where } r = \frac{A_1}{A_2}$$

Characteristics of Sound

• Loudness : Loudness is human perception to intensity of sound. Intensity is a measurable quantity whereas loudness is a sensation of hearing and is very subjective.

Intensity is proportional to square of amplitude

Intensity also depends on distance of listener from source, motion of air, density of medium, area of the sounding body, presence of other resonating bodies, etc.

Scientifically sound level is measured in dB (decibel) give as

$$\beta = 10 \log_{10} \left(\frac{I}{I_0} \right)$$

where Io=min freq that normal ear can hear ($10^{-12}W/m^2$) The unit of difference in loudness is bel (1dB = 0.1 bel)

Loudness is measured in unit phon. It is equal to the loudness in decibel of any equally loud pure tone of frequency 1000Hz.

NOTE: Max intensity tolerable by human ear is 120 dB. Pressure on the ear membrane from maximum tolerable 28 Pa to feeblest sound 2x10⁻⁵ Pa. • Pitch : It is the characteristic of sound which helps differentiate sounds of high frequency from a low frequency note. Higher frequency denotes higher pitch

• Quality or timbre : It is a characteristic which helps us differentiate between two sounds of same pitch and loudness. It depends on the number of overtones present

NOTE: A sound produced by regular and periodic vibrations without any sudden change in loudness and is pleasing to the ear is called musical sound.

A mixture of sounds of different frequencies which do not have any relation with each other and hence is not pleasant to hear is called noise. A sequence of frequencies which have a specific relationship with each other is called a musical scale.

Classification of musical instruments refer textbook page 154-155

VIII•IX•X ICSE • XI(Sc) • XII(Sc) • CET/JEE(M)/NEET • IGCSE •CBSE• IB • HL & SL + A & AS • Engineering

Telephone: 9820246760 / 9769479368 • Websites: navlakhi.com / navlakhi.education Email: abhishek@navlakhi.com –or– kunal@navlakhi.com

